20. Februar 2025

Ammoniak – Kraftstoff der Zukunft?

Das IKEM auf einen Blick

Gemeinnütziger Verein Unabhängiges Forschungsinstitut

Mehr als 15 Jahre Erfahrung in der interdisziplinären Klimaschutzforschung

Reduzierung von Emissionen Ausbau der Erneuerbaren Nachhaltige Entwicklung

260+
Projekte

580+
Publikationen

55+
Mitarbeiter:innen

Arbeits- und Forschungsschwerpunkte

Energierecht

Forschungs-akademie

Mobilität

Klima und Innovation

Judith Schäfer-Gendrisch

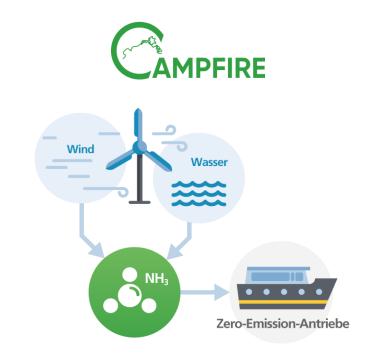
Geschäftsführerin

- Juristin und Expertin für innovatives
 Energie- und Klimaschutzrecht
- Weitere Forschungsschwerpunkte: Erzeugung, Transport und Nutzung erneuerbarer Kraftstoffe in der Schifffahrt sowie baurechtliche Fragen rund um erneuerbare Energieanlagen

judith.schaefer-gendrisch@ikem.de

Ammoniak – Kraftstoff der Zukunft?

Das Projekt CAMPFIRE

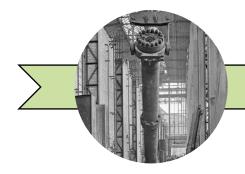

Interdisziplinärer Forschungsverbund mit rund 30 Partnern aus der Region Nord-Ost

- Neue Verfahren für die Produktion von Ammoniak
- Energieträger für eine emissionsfreie Schifffahrt

Leitprojekt der TransHyDE-Plattform

- Ammoniak als Wasserstoff-Transportlösung
- Erprobung der (de)zentralen Nutzung von Ammoniak
- Logistikstrukturen für den Ammoniak-Import & -Verteilung

IKEM analysiert die rechtlichen und politischen Rahmenbedingungen



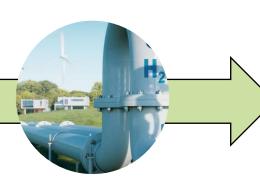
www.wir-campfire.de

Ammoniak

Haber-Bosch-Verfahren

Globaler Einsatz als Düngemittel

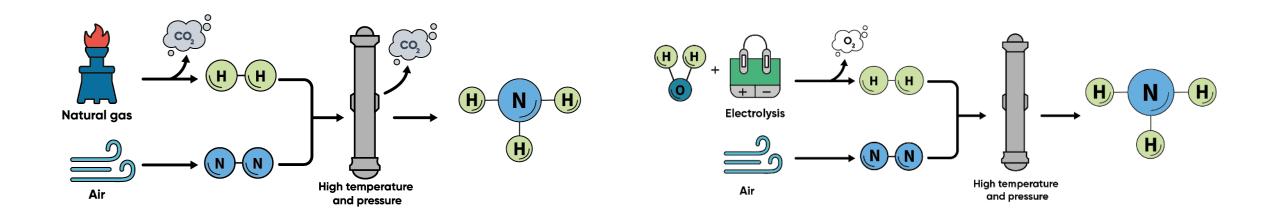
Ammoniak-Bus


21. Jahrhundert

Schiffe mit Ammoniakantrieb

Ammoniak-Terminals in Hamburg/Brunsbüttel

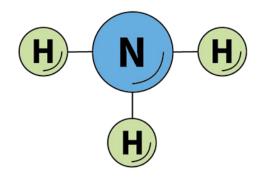
Ausschreibung H2-Global


20. Jahrhundert

Ammoniak – Erzeugung (Haber-Bosch-Prozess)

Herkömmliches Verfahren

Verfahren für grünes Ammoniak


Perspektivische Einsatzgebiete für Ammoniak

Direkte Nutzung

See- und Binnenschifffahrt Technologie: SOFC, PEM oder Verbrennungsmotor

BHKW, KWK
Technologie: integrierte
Verbrennung, Crack-Reaktor

Industrieöfen
Technologie: Integrierte
Verbrennung, Crack-Reaktor

Erforderliche
Technologien
befinden sich
noch in
Entwicklung

Einsatz als H2-Träger

Langstreckentransport von H2 in Form von Ammoniak, zB via Seeschiff:

Technologie: Ammoniaksynthese und Rückumwandlung in Wasserstoff mittels Cracker-Technologie

Transport von H2 z.B. via Pipeline zum Einsatzort

Kraftstoffalternativen

Ammoniak Wasserstoff Methanol

H

H

H

H

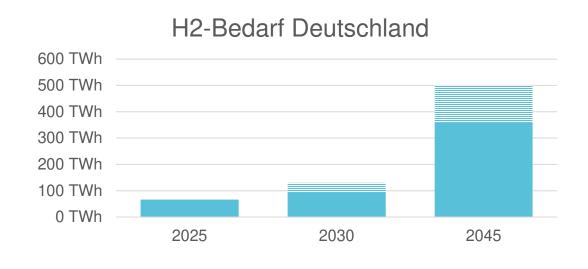
C

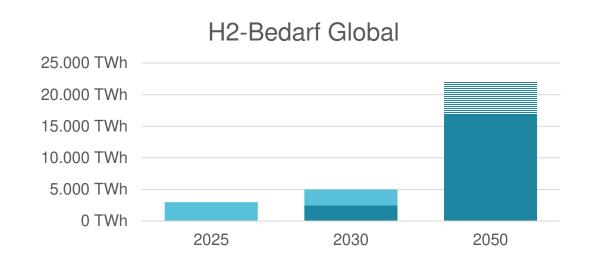
O

Vorteile gegenüber anderen Energieträgern

		H-N-H	H C O		H-H
		Ammoniak	Methanol	LH ₂	H ₂
Wasserstoffanteil (%)		17.8	12.6	100	100
Volumetrische Energiedichte (MJ/I)		11,6	16,8	8,5	1
Gravimetrische Dichte (MJ/kg)		18,6	21	120	120
Energieeffizienz Erzeugung aus H ₂ (%)		77-81	78-81	76-82	-
Energieeffizienz Rückumwandlung zu H ₂ (%)		65-73	56-61	-	-
Kohlenstoff(-kreislauf) erforderlich		Nein	Ja	Nein	-
Lagerung/Transport	Druck (bar)	1	1	1	700
	Temperatur (°C)	-33	Umgebung	-253	Umgebung

Vorteile gegenüber anderen Energieträgern


Transportoption	Distanz	Prozesskette	Wirkungsgrad - bezogen auf den eingesetzten	
			Wasserstoff	EE-Strom
flüssiger Wasserstoff per Schiff	10.000 km	81% 93%	75 %	49 %
Ammoniak per Schiff (stoffliche Nutzung)	10.000 km	B → ⊕ 97 %	80%	52 %
Ammoniak per Schiff mit Wasserstoffrück- gewinnung	10.000 km	B→ → B 83% 97% 93%	75 %	49 %
Methanol per Schiff	10.000 km	65 % 98 %	63 %	41 %


Tabelle 1: Effizienz der betrachteten Transportketten gemessen am Energiegehalt des eingesetzten Wasserstoffs beziehungsweise des eingesetzten EE-Stroms (bei einem Wirkungsgrad der Elektrolyse von 65 Prozent; Kohlenwasserstoffe mit CO₂ aus Direct Air Capture).

Herausforderungen

- Verfügbarkeit von Wasserstoff und Ammoniak
- Entwicklungsstadium der notwendigen Technik, insbesondere Cracker und Brennstoffzellen
- Spezielle Anforderungen an Umweltschutz und Sicherheit
- Akzeptanz
- Rechtliche Rahmenbedingungen

Aktuelle Entwicklungen beim Rechtsrahmen

Einsatz als Treibstoff in der Seeschifffahrt

International Maritime Organization

- Vorbereitung für die Erweiterung des International Code of Safety for Ships Using Gases or Other Low-flashpoint Fuels (IGF-Code)
- Entwurf vorläufiger Richtlinien für technische Anforderungen an die Nutzung von Ammoniak als Schiffskraftstoff
- Aktuell: Verhandlungen über einen globalen
 Preis für Treibhausgasemissionen von Schiffen,
 Nachhaltigkeitskriterien sowie Global Fuel
 Standard (GFS) klare Emissionsziele und
 Vorgaben für alternative Kraftstoffe

Zertifizierung von RFNBOs

Ammoniak kann ein sog. erneuerbares Gas nicht biogenen Ursprungs (RFNBO) sein, wenn die Kriterien für die Herstellung von erneuerbarem Wasserstoff/Derivaten nach EU-Vorgaben erfüllt sind

Von der EU anerkannte freiwillige Zertifizierungssysteme (12/2024)

- Certify
- ISCC
- RedCert

Funktion für Produzenten

- Einhaltung der EU-Vorschriften
 (Nachhaltigkeitskriterien) nachweisen
- Zugang zu Förderprogrammen der EU bzw. EU-Mitgliedsstaaten erhalten
- Grenzüberschreitenden Handel erleichtern

EU-Gaspaket

Erstmalige Regulierung von Wasserstoff-Importinfrastrukturen Definition Wasserstoffterminal,

"Wasserstoffterminal" eine Anlage zur Entladung und Umwandlung von flüssigem Wasserstoff oder flüssigem Ammoniak in gasförmigen Wasserstoff für die Einspeisung in das Wasserstoffnetz oder das Erdgassystem oder zur Verflüssigung und Verladung von gasförmigem Wasserstoff, einschließlich Hilfsdiensten und vorübergehender Speicherung, die für den Umwandlungsprozess und die anschließende Einspeisung in das Wasserstoffnetz erforderlich sind, jedoch mit Ausnahme der zu Speicherzwecken genutzten Teile von Wasserstoffterminals;

Deutschland: Wasserstoffbeschleunigungsgesetz

Gesetzentwurf

- Aufbau der Infrastruktur für eine Wasserstoffwirtschaft beschleunigen
- Anwendungsbereich umfasst Anlagen zum Import und zur Aufspaltung von Ammoniak, sog.
 Ammoniakimportterminals
- Ihre Errichtung und ihr Betrieb sollen im überragenden öffentlichen Interesse stehen
- Aber: Bundestag hat bisher nicht über den Entwurf abgestimmt Neuauflage der Inhalte des Gesetzesentwurfs in der neuen Legislaturperiode fraglich

Rechtlicher Handlungsbedarf

Erzeugung und Speicherung

- Weiter f\u00f6rmliches Genehmigungsverfahren (BlmSchG) f\u00fcr Ammoniaksyntheseanlagen
- Lange Verfahrensdauern
- Planungsunsicherheit für Speicheranlagen, insbesondere hinsichtlich des störfallrechtlichen Abstandsgebots

Nutzung

 Rechtsunsicherheit wegen z.T. unzureichender Sicherheitsstandards und Normen

Transport

- Ammoniakbetriebene Schiffe werden nicht von den schifffahrtspezifischen völkerrechtlichen Gefährdungshaftungsregime erfasst
- Verlagerungsgrundsatz schränkt die Optionen in der Logistikkette ein
- Unklarheit bezüglich der Genehmigungsverfahren für den Leitungsbau, besonders bei einzelnen Leitungen
- Lange Verfahrensdauern

Fazit

Spannungsverhältnis zwischen Technologieoffenheit und möglichst schneller Transformation

Eine politische Richtungsentscheidung für die nächsten Jahre ist nötig

Vermeidet den Aufbau von Parallelstrukturen

Schafft Planungs- und Rechtssicherheit für die verschiedenen Industrien und Sektoren

Ammoniak als strategische Option

Hohe Energiedichte, etablierte Logistikketten, Potenzial für Industrie und Verkehr

Kontakt

Judith Schäfer-Gendrisch judith.schaefer-gendrisch@ikem.de

Institut für Klimaschutz, Energie und Mobilität e.V.

Alte Jakobstraße 85-86 10179 Berlin

info@ikem.de

